SOME CONGENT'LAL MALERMATIONS

OF

THE INTESTINAL CANAL.

By Willian turner, M.B. Lond., F.R.C.S.E.;
GENIOR DEMONSTRATOR OF ANATOMY, UNIVERSITY OF EDINBURGH.

> Real before the Obstetrieal Society of Edinburgh, 10 th June, and Reprinted from the Edinburgh Medical Journal, Angust 1863.
c

Congenital malformations of the intestinal canal are objects of considerable interest to the pathological anatomist. From thicir study much information may be derived not only of the changes in form, position, and relations which the canal goes through in the course of its development, but of the cffects which may be produced on its growth and arrangement by intra-uterine inflammation, affecting cither its scrous coat or that of the adjacent abdominal wall or viscera.

Thrce cases of intestinal malformation having recently come under my notice, I purpose relating them to the Society this evening, with some remarks which have been suggested by a consideration of their peculiaritics.

The first case to which I slall direct attention is a congenital malformation of the jcjunum. The specimen was sent to me about a month ago by Dr Keiller, with a request that I would examine and note its anatomical characters, and communicate them to the Socicty. It consisted of the abdominal portion of the alimentary canal of a male infant which died twelve days after birth. The stomach was of small size, but normal in shape. Duodenum of usual form, but somewhat dilated. Jejunum, for a distance of 25 inches from its commeneement, distended even above the sizc of the adult intestine; it then appeared to terminate abruptly in a rounded cul-de-sac. The distention was cspecially well marked for a few inches above the cul-de-sac. A closcr cxamination of the intestine showerl, however, that it did not terminate in this abrupt manner, for froin the rounded end of this portion of greatly distended jejunum a delicate thrend-like structure connected with
the coats of the jejunum, but not communicating with its canal, was prolonged downwards for about $1 \frac{1}{2}$ inch. It evidently represented a part of the jcjunum atrophied almost to complete disappearance. Below this, again, for $1 \frac{1}{2}$ inch, the gut was pervious, and formed a small loop, which had a diameter equal to the stem of a common tobacco-pipe. Beyond this loop was a second constriction, 2 inches long, similar to the one already described. Then the gut, again pervious, formed a second small loop; below which was a third constriction, $1 \frac{1}{2}$ inch long, similar to the former ones. The rest of the jejunum and the whole of the ileum were arranged in the usual convoluted manner; their canal was pervious, but their diameter did not exceed that of the two small loops of gut between the three constricted thread-like portions. The mesentery, which corresponded to the three places where the gut presented the greatest amount of constriction, was puckered and shortened, and those portions of it which supported the two short intermediate loops were more or less twisted. ${ }^{1}$ I have looked carefully, but

without success, for any appearance of bands of adhesious at these spots, and Dr Thorold, by whom the post-mortem examination was made, has informed me that he saw no traces of old or recent lymph in these localities. An injection which I forced into the trunk of the superior mesenteric artery ran freely into those branches which supplied the bowel above and below the constrictions, but it did not enter into any vesscls situated in the three constricted portions and the two small intermediate loops of the јејииим.

[^0]The large intestines were normal in their arrangement. Their diameter was about twice that of the ileum and lower end of the jejunum. The ilio-cocal ralve was well formed, and no obstruction cxisted at its orifice. The biliary and pancreatic ducts opened in the usual way into the duodenum. The jejunum, as far as the cul-de-sac, was distended with a dark brown liquuid, which was prevented fiom passing any lower down, through the constriction already described. The coils of the small intestime contained a bluish-green slimy material, probably inspissated mucus. The valvula conniventes were small, the villi well developed. The large intestine contained a material not unlike that found in the lower end of the small. I may also mention that Dr Thorold noticed during the post-mortem examination that the spleen was subdivided into several distinct gland masses, situated partly at the cardiae end, and partly along the great curvature of the stomach.

The chief interest of this case will, I think, rest in the determination of the cause which produced the excessive atrophy I have described, for its position so high up the canal puts it beyond the reach of successful operative interference. To what circunstances, then, are we to ascribe this malformation.
$1 s t$, Was it produced by a simple diminution of formative power at this spot, during the evolution of the coils of the small intestine out of the single loop of which the canal is at first formed? or,
$2 d$, Was it due to a morbid process, probably inflammatory, set up at an early period of embryonic life, which produced a local or limited atrophy of the gut?

That the first named of these supposed causes may occasion atrophy of an organ, or part, is borne out by some of the cases which the records of pathology furnish us with. And such deficiencies in the development of a part especially occur in those localities in which a structure subservient only to the purposes of the foetal cconomy shrivels up and altogether or in part disappears. I may, in illustration of this statement, more especially refer to the mumerous cases which have now been recorded, ${ }^{1}$ in which a contraction of the aorta, amounting in some instances to a complete closure, has been met with at or just below the termination of the arch; localities which embryological research has tugght us correspond in the one case to the place of junction of the fifth and fourth vascular arches, in the other to that of the right and left aortic roots. Now, in the natural development of the vessels, both the right aortic root and that part of the filth left arch which constitutes the ductus arteriosus atrophy and disalpipear either altogether or partially. And in the eases of contraction of the atorta here referred to, the diminution of the calibre of this vessel secms to have been duc to an extension to it of the same process

[^1]by which the shrivelling up both of the ductus artcriosus and right aortic root is occasioned.

Comected with the canal of the intestine are certain appendicular embryonic structures which, in the ordinary course of development of the entire body, disappear. The vitelline duct is one of these structures. It is continuous with that part of the intestinal canal which subsequently becomes the ileum, its connexion with this portion of the bowel being indicated, even in some adults, by the occasional presence of a diverticulum. More commonly, however, it shrivels up and disappears. Now, it is quite possible to conceive that the atrophy may not be confined to the vitelline duct, but may be extended to the intestine at the spot to which the duct is connected. And thus the canal may become closed, or its further growth beyond the stage which it possessed when the atrophy of the duct commenced either retarded or altogether prevented.

Cases of intestinal obstruction have been recorded which appear to bear out this supposition ; cases in which the obstruction had ariscu from diminution in the size of the gut, without any evidence of inflammatory mischicf. Such, in particular, seems to be the explanation one might give of the origin of an obstruction in the first of two cases recorded by Dr Carver. ${ }^{1}$ An infant which dicd on the fourth day after birth had contraction of the ileum, beginning about 12 inches from its coecal end, i.e., at the place where with reason one might suppose the vitclline duct had bcen attached. And it is particularly noted in this case that there were no signs of inflammation either of the peritoneum or bowels. In a second case, an infant which died on the sixth day, there was a similar condition of the ileum, but it was complicated with acute peritonitis, ulceration, and perforation of the lower part of the ileum and coecum. It appears probable, however, that in this casc the atrophy of the intestine preceded the peritonitis rather than that the atrophy was a result of the inflammation.

But though disposed to look upon some cases of intestinal obstruction as occasioned by an extension to the bowel of the process of atrophy, which produces a shrivelling up of somc of its embryonic appendicular structures, yet I do not think that the casc now bcfore us can be brought into the same category, for the jejunum has not at any period of its development a structure like the vitclline duct conuected with its coats or continuous with its canal, scrving merely an embryonic purpose and subsequently disappearing. I am inclined, therefore, to regard the inflammatory theory as the one to which the contraction and atrophy of the bowel ought in this casc more probably to be referred. And that peritonitis is not unfrequently the cause of various malformations in the iutestinal and other abdominal viscera has becu satisfactorily established by Professor Simpson, in his well-known memoir "On the Infammatory Origin of some Tarieties of Hernia and

[^2]Malformation in the Foetus." ${ }^{\text {" }}$ The shortened and somewhat puckcred condition of the mesentery, corresponding to the thread-like contracted parts of the jejunum, exhibited, I think, indications of the effects of previous inflammation. And although it was noted that there was an absence of bands, cither of old or recent adhesions, yct this of itself cannot be accepted as sufficient cvidence against the theory of the inflammatory origin of this malformation ; for, as was pointed out by Dr Simpson in the memoir already referred to; humerous experiments and observations have shown that old cffused lymph or false membrane is often more or less entirely absorbed ; and this opinion has since been confirmed by the observations of other pathologists. ${ }^{2}$

But conjoined with this puckered condition of the mesentery, and perhaps in some measure as a consequence of it, the two small loops of jejunum situated between the constricted thread-like portions werc twisted upon the axes of their mesenteric attachments. Through this twisting not only was an injurious amount of pressure exercised upon the gut itself, between and immediately above and below these two loops, but the branches of the mesenteric artery passing to these parts of the bowel were evidently so compressed as to prevent the size running along them when I injected the mesenteric trunk.

Through the pressure exercised directly upon these parts of the intestine itself, as well as from the obstructed state of the arteries going to it, we may then in part account, I think, for the extreme degree of atropliy, amounting almost to complete disappearance, which it here prescnted. Torsion of the small intestine is in itself a matter of some interest; for, from a careful statistical inquiry into the difficrent forms of intestinal obstruction, Dr Brinton has shown ${ }^{3}$ that the large, much more frequently than the small, intestine is the seat of such axial twistings.

The diffcrence betwecn the appearance of the intestinal contents in the parts above and below the seat of obstruction was, of course, due to the biliary and pancreatic secretion being cnt off from the lower end of the canal. Thus only the part above the obstruction had a bile-tinged colour, the bluish-green contents of the canal leelow being probably nothing more than inspissated mucus. So that by the division of the intestine into an upper and lower portion, a natural separation, to some extent at least, of the secretion pourred into its cavity was produced.

The length of time which the child lived after birth, viz., twelve days, is accounted for by the stricture boing so far down the jejunum as to allow of some amount of absorption through the intestinal villi to go on, and this notwithstanding the frequent vomiting which took place after the administration of food.

[^3]The eases to whieh I shall next direet the attention of the Soeiety illustrate two forms of malposition of the eœeum.

In one, an adult male, the coeeum was not placed in its proper fossa, the right iliac, but was displaeed upwards, and occupied the adjacent parts of the right lumbar and hypochondriac regions. Here it was not tied down closely to the abdominal wall, but possessed an cxtensive mesentery. It was thereforc movable, and could be thrown across to the left side of the middle line. From it the colon procceded, and, after making a sharp bend, passed almost immediatcly into the transverse eolon. The ascending colon eould hardly be said to exist. Occupying the right iliac fossa, passing upwards through it and the right lumbar region, was the terminal part of the ileum. It possessed in these regions the same relation to the abdominal wall which the coecum and ascending colon normally have, and was fastened down by the peritoncum just as they are. In the upper part of the right lumbar region the ileum left the wall, acquired a distinct mesentery, passed forwards, and joined the coecum.

This form of displacement of the eœcum upwards, conjoined with absence of an ascending colon, although rare, has yet occasionally been observed by pathological anatomists. Dr Simpson (p. 35) refers to some eases which have been related in the older records of medicine, and he describes others of a similar nature which came under his own observation. Dr Joln Reid also saw a ease in which the coecum was placed in the right lumbar region. ${ }^{1}$

This malposition of the commencement of the large intestine is completely to be explaincd on embryological grounds. It represents a condition which always exists at a certain period of embryonic life.

In the rotation of the two limbs of the primitive loop which represents, in the early weeks of intra-uterine life, the intestinal canal, the posterior limb out of which the coecum is developed is thrown upwards, so that the coeeum lies in the middle line of the abdomen, or even a little to the left of that line, and in close relation to the under surface of the liver. As the development adrances, the coeeum gradually passes into the right hypochondrium, and then descends through the right lumbar region into the right iliac fossa. This deseent of the coecum does not take place until a late period of foetal life. I have brought with me a foctus apparently between the fifth and sixth months, in which the coccum situated in the right lumbar region is in close relation to the under surface of the liver. But its descent may be delayed even to almost the last month of intra-uterine life. In a foetus at the cightlo month, the abdominal eavity of which I opened a short time ago, the ececum was situated altogether in the right lumbar region, elose to the lower end of the right kidney. The right iliac fossa was occupied by a coil of the ilcum, which was ticd to the back of the fossia by the peritoneum. The testicles had deseended into the scrotum.
${ }^{1}$ Ldinburgh Medical and Surgical Journal, vol. slvi. p. 72, 1836.

The ascending colon is therefore the part of the large intestine which is last formed, the space in which it is situated being provided for by the deseent of the ceecum into the right iliac fossa.

Thic other case of malposition of the cocum consisted in a displacement downwards into the eavity of the pelvis. It occurred in anl aged female. The coecum rested on thic floor of the pelvis, and from it the colon ascended through the right iliac and lumbar regions, where it was tied down by the peritoneum, to the right hypochondrium, in which it bccame continuous with the transverse colon. Owing to the position of the coccum, the lower end of the ileum also entered the pelvis, and passed to the right side of that cavity to join the large intestine. The coceum and as much of the ascending colon (about two inches) as was placed in the pelvis were completely surrounded by peritoncum; so that they possessed considerable mobility, and could be thrown over to the left of the pelvis, or even drawn upwards into the cavity of the abdomen proper.

In this case we have an exactly oppositc condition to that met with in the one previously described.

Instead of being arrested, the development was excessive, and the coccum and ascending colon passed through their proper regions to one beyond. It is, I think, a rarer form than the displacement upwards. Dr John Reid has indeed (p. 72) related a closely corresponding case, and he refers to anothicr recorded by Mr Anneslcy. The malposition would appear to have been occasioned by an excessive growth in the downward direction of the ascending colon, so that the coccum was projected below its proper region into the pelvis. Thcre was no appearance of peritoneal inflammation, no thickening of the membrane, or adhesions between it and the adjacent parts.

The cases of upward and downward malposition which I have now described are to be distinguished from those one sometimes meets with in which the coceum is not firmly tied down to the right iliac fossa, but possesses a movable mesentery: for though, in the latter, the cœcun las some amount of mobility, so that it may temporarily undergo a change of place, yet its fossa is not, as in the former cases, permanently occupied by a part of another viseus.

[^0]: ${ }^{1}$ Explumation of Figure.- a, Cul-de-sac. l, b, b, Thread-like constricted parts of jejunum. c, c, Two short intermediate loops. d, d, Shortenel mesentery.

[^1]: ${ }^{1}$ See an article by Dr Peacock in the Medico Chirurgical Review, 1860 yol. xxv. p. 467 ; also iny Memoir on the Irregularities of the large Bloodrcssels, in the same Jommal, Uctuber $1862, \mathrm{p} .46^{\circ} 6$.

[^2]: ${ }^{3}$ British Merlical domrual. 11 th Iugrist 1860 .

[^3]: ${ }^{1}$ Edinburch Medical and Surgical Joumal, vol. lii., 1839.
 ${ }_{2}$ Kirkes, Modical (iazette, April 1849. l'aget's Leetures, 2d Edit., p. 28?.
 ${ }^{3}$ Lancet, May 21, 185!.

